17 research outputs found

    DNMT3A変異はポリコーム抑制複合体1との異常な協調関係を通して造血幹細胞の分化阻害および白血病性形質転換の促進をもたらす。

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    Single-Cell Analysis of the Multicellular Ecosystem in Viral Carcinogenesis by HTLV-1

    Get PDF
    成人T細胞白血病リンパ腫の多段階発がん分子メカニズムを解明 --難治性疾患の新規治療標的候補を複数同定--. 京都大学プレスリリース. 2021-09-07.Premalignant clonal expansion of human T-cell leukemia virus type-1 (HTLV-1)–infected cells occurs before viral carcinogenesis. Here we characterize premalignant cells and the multicellular ecosystem in HTLV-1 infection with and without adult T-cell leukemia/lymphoma (ATL) by genome sequencing and single-cell simultaneous transcriptome and T/B-cell receptor sequencing with surface protein analysis. We distinguish malignant phenotypes caused by HTLV-1 infection and leukemogenesis and dissect clonal evolution of malignant cells with different clinical behavior. Within HTLV-1–infected cells, a regulatory T-cell phenotype associates with premalignant clonal expansion. We also delineate differences between virus- and tumor-related changes in the nonmalignant hematopoietic pool, including tumor-specific myeloid propagation. In a newly generated conditional knockout mouse model recapitulating T-cell–restricted CD274 (encoding PD-L1) gene lesions found in ATL, we demonstrate that PD-L1 overexpressed by T cells is transferred to surrounding cells, leading to their PD-L1 upregulation. Our findings provide insights into clonal evolution and immune landscape of multistep virus carcinogenesis

    Integrated genetic and clinical prognostic factors for aggressive adult T-cell leukemia/lymphoma

    Get PDF
    成人T細胞白血病リンパ腫(ATL)におけるゲノム情報と臨床情報を統合したリスクモデルを確立 --ATLの個別化医療を推進--. 京都大学プレスリリース. 2023-04-10.The prognosis of aggressive adult T-cell leukemia/lymphoma (ATL) is poor, and allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is a curative treatment. To identify favorable prognostic patients after intensive chemotherapy, and who therefore might not require upfront allo-HSCT, we aimed to improve risk stratification of aggressive ATL patients aged <70 years. The clinical risk factors and genetic mutations were incorporated into risk modeling for overall survival (OS). We generated the m7-ATLPI, a clinicogenetic risk model for OS, that included the ATL prognostic index (PI) (ATL-PI) risk category, and non-silent mutations in seven genes, namely TP53, IRF4, RHOA, PRKCB, CARD11, CCR7, and GATA3. In the training cohort of 99 patients, the m7-ATLPI identified a low-, intermediate-, and high-risk group with 2-year OS of 100%, 43%, and 19%, respectively (hazard ratio [HR] 5.46, p < 0.0001). The m7-ATLPI achieved superior risk stratification compared to the current ATL-PI (C-index 0.92 vs. 0.85, respectively). In the validation cohort of 84 patients, the m7-ATLPI defined low-, intermediate-, and high-risk groups with a 2-year OS of 81%, 30%, and 0%, respectively (HR 2.33, p = 0.0094), and the model again outperformed the ATL-PI (C-index 0.72 vs. 0.70, respectively). The simplified m7-ATLPI, which is easier to use in clinical practice, achieved superior risk stratification compared to the ATL-PI, as did the original m7-ATLPI; the simplified version was calculated by summing the following: high-risk ATL-PI category (+10), low-risk ATL-PI category (−4), and non-silent mutations in TP53 (+4), IRF4 (+3), RHOA (+1), PRKCB (+1), CARD11 (+0.5), CCR7 (−2), and GATA3 (−3)

    Clinical application of genomic aberrations in adult T-cell leukemia/lymphoma

    No full text

    ADAM8 Is an Antigen of Tyrosine Kinase Inhibitor-Resistant Chronic Myeloid Leukemia Cells Identified by Patient-Derived Induced Pluripotent Stem Cells

    No full text
    Summary: Properties of cancer stem cells involved in drug resistance and relapse have significant effects on clinical outcome. Although tyrosine kinase inhibitors (TKIs) have dramatically improved survival of patients with chronic myeloid leukemia (CML), TKIs have not fully cured CML due to TKI-resistant CML stem cells. Moreover, relapse after discontinuation of TKIs has not been predicted in CML patients with the best TKI response. In our study, a model of CML stem cells derived from CML induced pluripotent stem cells identified ADAM8 as an antigen of TKI-resistant CML cells. The inhibition of expression or metalloproteinase activity of ADAM8 restored TKI sensitivity in primary samples. In addition, residual CML cells in patients with optimal TKI response were concentrated in the ADAM8+ population. Our study demonstrates that ADAM8 is a marker of residual CML cells even in patients with optimal TKI response and would be a predictor of relapse and a therapeutic target of TKI-resistant CML cells. : The paucity and heterogeneity of CML stem cells are obstacles for analyses. In our study, a model of CML stem cells derived from CML-iPSCs identified ADAM8 as an antigen of TKI-resistant cells. In CML patients, ADAM8+ cells showed TKI resistance and residual CML cells after TKIs-treatment were concentrated in ADAM8+ population, suggesting that ADAM8 is a marker of TKI-resistant CML cells. Keywords: chronic myeloid leukemia, disease specific iPSCs, TKI-resistant CML stem cell
    corecore